
  

Improving TCP/IP Security Through 

Randomization Without Sacrificing Interoperability

Michael J. Silbersack

November 26th, 2005

http://www.silby.com/eurobsdcon05/



  

What does that title mean?

● TCP was not designed with an eye towards 
security

● There are many attacks against TCP which can 
be prevented without resorting to encryption or 
keyed hashes

● Sometimes the obvious fix to a TCP security 
problem leads to interoperability problems



  

Cases of Security Breaking 
Interoperability

● Implementation of OpenBSD ISN scheme in 
FreeBSD

● Implementation of zeroed IP ID values in Linux
● Implementation of port randomization in 

FreeBSD



  

Topics to discuss

● IP ID values
● Ephemeral Port Randomization
● TCP Initial Sequence Numbers
● TCP Timestamps



  

IP ID Values

● IP ID values are used for the purpose of IP 
fragment reassembly

● If IP ID values are repeated too quickly, two 
different packets can be reassembled together, 
creating a corrupt packet

● Operating systems traditionally use a single 
system-wide counter which increments by one 
for each packet sent

● This leaks information about a host's level of 
traffic and a host's identity



  

IP ID Fixes

● Use a ID value of 0 on fragments with the DF 
(don't fragment) bit set
– Tried by Linux, some firewalls / NAT machines were 

found to strip DF bits, causing a stream of 
fragmented packets that all had the same ID value

● Store per-IP state and use a separate counter 
for each IP (Linux)

● Use a LCG to generate psuedo-random ID 
values that have a relatively long time between 
repeats (OpenBSD)



  

IP ID fixes - simpler

● The danger of quickly repeated ID values has 
been overstated

● Repeated values only cause packet corruption 
in cases where packets were lost or reordered 
on the network

● If two packets are misassembled together, the 
TCP/UDP checksum will detect the corruption 
and throw the packet away

● Therefore, the worst case is that a single 
packet drop causes two packets to be dropped



  

Ephemeral Port Randomization

● Ephemeral ports have traditionally been 
allocated in a sequential fashion, making it easy 
for an attacker to figure out the next port to be 
used
– One positive property of this behavior is that the 

period of time before ephemeral port reuse was 
maximized

● Ephemeral port randomization makes spoofing 
attacks more difficult, nearly 2^15 times more 
difficult if a large ephemeral port space is used
– Ports can be reused a few milliseconds later



  

Port Randomization Problems

● After FreeBSD enabled port randomization, one 
user with a FreeBSD machine running squid in 
front of a FreeBSD machine running Apache 
started to notice that some connections were 
failing

● Disabling port randomization solved the 
problem for him

● One of the failure cases was caught; a port was 
being reused in 15ms



  

Port Randomization Problems 
Continued

● The glitch is almost certainly a bug in the 
FreeBSD TCP stack – but it is one that would 
never happen without port randomization

● Do other operating systems have lingering bugs 
like this that port randomization will expose?

● For now, FreeBSD turns off port randomization 
when the connection rate exceeds a certain 
threshold

● A better solution is still being sought



  

One troubled connection

17:31:15.374266 XX.XX.XX.XX.1501 > YY.YY.YY.YY.80: F 
4253937378:4253937378(0) ack 1547682423 win 8688 
<nop,nop,timestamp 152193515 295129972> (DF)

17:31:15.374537 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: . ack 
4253937379 win 57920 <nop,nop,timestamp 295129972 

152193515> (DF)

17:31:15.389416 XX.XX.XX.XX.1501 > YY.YY.YY.YY.80: S 
4253971599:4253971599(0) win 8192 <mss 1460,nop,wscale 

0,nop,nop,timestamp 152193545 0> (DF)

17:31:15.389598 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: R 
1547682423:1547682423(0) ack 4253937379 win 57920 (DF)

17:31:15.389604 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: R 0:0(0) 
ack 4253971600 win 0 (DF)



  

TCP Connections: A Quick Review

● A TCP connection is identified by a 4-tuple:
– Source IP

– Source Port

– Destination IP

– Destination Port

● The destination port is usually a well known 
port such as port 80 on a web server

● The source port is usually chosen from the 
ephemeral port range by the operating system



  

TCP Sequence Numbers

● TCP uses 32-bit sequence numbers to track 
how much data has been transmitted

● Each direction's sequence number is 
independent, and is chosen by the operating 
system at that end of the connection

● A sliding window is used, typically around 32K 
in size.  Packets with sequence numbers that 
fall into this window are accepted.



  

A Sample Connection

IP 10.1.1.9.65500 > 10.1.1.237.80: S 2766364594:2766364594(0) win 65535 <mss
 1460,sackOK,wscale 1,timestamp 146016542 0>
IP 10.1.1.237.80 > 10.1.1.9.65500: S 4027082585:4027082585(0) ack 2766364595
 win 5792 <mss 1460,sackOK,timestamp 80799562 146016542,wscale 2>
IP 10.1.1.9.65500 > 10.1.1.237.80: . ack 4027082586 win 33304

<timestamp 146016542 80799562>
IP 10.1.1.9.65500 > 10.1.1.237.80: P 2766364595:2766364664(69) ack 4027082586

win 33304 <timestamp 146016542 80799562>
IP 10.1.1.237.80 > 10.1.1.9.65500: . ack 2766364664 win 1448 <timestamp
 80799563 146016542>
IP 10.1.1.237.80 > 10.1.1.9.65500: P 4027082586:4027083050(464) ack
 2766364664 win 1448 <timestamp 80799565 146016542>
IP 10.1.1.9.65500 > 10.1.1.237.80: F 2766364664:2766364664(0) ack 4027083050
 win 33304 <timestamp 146016542 80799565>
IP 10.1.1.237.80 > 10.1.1.9.65500: F 4027083050:4027083050(0) ack 2766364665
 win 1448 <timestamp 80799566 146016542>
IP 10.1.1.9.65500 > 10.1.1.237.80: . ack 4027083051 win 33303

<timestamp 146016542 80799566>



  

Classes of Initial Sequence 
Numbers

● Time based
● Random Positive Increments
● Random
● RFC 1948



  

RFC 1948

● Steven Bellovin describes a near-perfect 
solution to this problem in RFC 1948

● A system-wide secret is generated and stored 
at boot time

● A system-wide time counter is incremented at a 
constant rate

● Initial sequence numbers are generated as 
follows:

● ISN = time + MD5(srcip, srcport, dstip, dstport, 
secret)



  

One Flaw In RFC 1948

● For a certain tuple, sequence numbers are fully 
predictable until the system reboots

● Example:
– A SMTP server uses RFC 1948 for all ISNs

– Spammer uses an AOL account to connect to that 
SMTP server, records ISN values

– Spammer can now spoof connections from that 
AOL IP to the SMTP server until it reboots

● If the hash is rekeyed, then monotonicity is 
broken – so we can't fix it that way



  

IP Spoofing

● An exact guess at the ISN in a SYN-ACK 
allows you to spoof a connection

● As you can only send data, this only serves a 
purpose against rsh/rlogin

● This attack was easy when time-based 
sequence numbers were used

● Random positive increments make this attack 
more difficult, but not impossible



  

Connection corruption

● Attacks well described in “Slipping in the 
Window” by Paul Watson

● The following attacks work because TCP stacks 
generally accept packets that have a seq # 
value that is anywhere in the sliding window
– RST attacks

– SYN attacks

– Data injection attacks



  

How to defeat these attacks

● Ensure that the sequence numbers of each 
connection are entirely independent of one 
another
– Attackers will have to spoof the entire sequence 

space

● Implement the countermeasures described in 
tcpsecure so that not just any sequence 
number in the window is accepted



  

Interoperability concerns

● Initial sequence numbers can be randomized...
– Except when the same 4-tuple is reused within a 

short period of time

● Theoretical reasoning:  If the same 4-tuple is 
reused and the same sequence space is 
overlapped, old duplicate packets may corrupt 
the connection

● Practical reason:  TIME_WAIT socket recycling 
rules



  

The Time Wait State 

● During a normal TCP socket close, the side of  
the connection that starts to close the 
connection will enter the time wait state

● The purpose of the time wait state is to ignore 
any old (or duplicate) packets still in the 
network

● BSD-derived TCP/IP stacks will recycle a 
TIME_WAIT socket only if the ISN in the SYN 
packet is greater than the sequence number at 
the end of the previous connection 



  

Empirical TIME_WAIT recycling 
results

● In order to verify the monotonically increasing 
sequence number requirement, a FreeBSD 
machine was modified so that it would generate 
monotonically decreasing sequence numbers

● The results showed types of behavior that were 
not expected



  

Empirical TIME_WAIT results

● Cisco IOS 12.3:  All connections accepted
● FreeBSD:  All connections delayed
● Linux 2.6.11-FC4:  All connections accepted 

due to a heuristic + tcpsecure behavior
● NetBSD 2.0.2: tcpsecure behavior
● OpenBSD 3.7: tcpsecure behavior
● Windows XP SP2: All connections delayed



  

The tcpsecure Behavior

59.515622 IP 10.1.1.203.80 > 10.1.1.9.65527: F 993959099:993959099(0) ack 
4086058688 win 33580<nop,nop,timestamp 2 146055920>

59.515742 IP 10.1.1.9.65527 > 10.1.1.203.80: . ack 993959100 win 33303 
<nop,nop,timestamp 146056026 2>

65.657308 IP 10.1.1.9.65527 > 10.1.1.203.80: S 4078507753:4078507753(0) win 65535 
<mss 1460,nop,nop,sackOK,nop,wscale 1,nop,nop,timestamp 146056640 0>

65.657610 IP 10.1.1.203.80 > 10.1.1.9.65527: . ack 4086058688 win 33580 
<nop,nop,timestamp 14 146056640>

65.657741 IP 10.1.1.9.65527 > 10.1.1.203.80: R 4086058688:4086058688(0) win 0

68.655831 IP 10.1.1.9.65527 > 10.1.1.203.80: S 4078507753:4078507753(0) win 65535 
<mss 1460,nop,nop,sackOK,nop,wscale 1,nop,nop,timestamp 146056940 0>

68.655914 IP 10.1.1.203.80 > 10.1.1.9.65527: S 2006422470:2006422470(0) ack 
4078507754 win 32768 <mss 1460,nop,wscale 0,nop,nop,timestamp 0 146056940>



  

TCP Security / Interoperability 
Summary

● For security purposes, sequence numbers must 
be unrelated to the sequence numbers of any 
other connection

● For interoperability purposes, ISNs in SYN 
packets must be monotonically increasing
– If this principle is violated, connection establishment 

may stall whenever a TCP connection is reused

– If port randomization is used, port reuse may be a 
common occurrence



  

A Sequence Number Survey

● Many ISN surveys have been done, but they 
generally do not consider
– How RFC 1948 works

– That OSes may generate SYN and SYN-ACK 
packets in different manners

● This survey focuses on a small range of 
ephemeral ports and watches how they behave



  

The Graphs

● The graphs you're about to see were generated 
by running a http benchmark utility against a 
web server

● Tests were run in both directions so that the 
ISN values in SYN and SYN-ACK packets 
could both be observed

● Each line is a series of initial sequence 
numbers captured in SYN / SYN-ACK packets 
for a certain sip:sport:dip:dport tuple



  

The Graphs (continued)

● Caveat 1:  I used different http test tools, and 
didn't keep the connection rate the same during 
each test.  This should not affect the results...
– Except for random positive increments, which would 

change their slope based on the connection rate

● Caveat 2:  For OSes that I do not have the 
source code to, the algorithm could be different 
than it appears to be.



  

Cisco IOS 12.3 SYN



  

Cisco IOS 12.3 SYN-ACK



  

FreeBSD SYN



  

FreeBSD SYN-ACK (no cookies)



  

FreeBSD SYN-ACK (cookies!)



  

Linux 2.6.11-FC4 SYN



  

Linux 2.6.11-FC4 SYN-ACK



  

NetBSD 2.0.2 SYN



  

NetBSD 2.0.2 SYN-ACK



  

OpenBSD 3.7 SYN



  

OpenBSD 3.7 SYN-ACK



  

OpenBSD's algorithm

ISN = ((PRNG(t)) << 16) + R(t)

PRNG(t) = a pseudo-randomly ordered list of
                  sequentially-generated 16-bit numbers

R(t) = a 16-bit random number generator
                  with its msb always set to zero

(this analysis by Bindview in cert-2001-09)



  

Windows XP SP2 SYN



  

Windows XP SP2 SYN-ACK



  

ISN Summary

● No two OSes are the same
– Why?

● The FreeBSD way best meets the conflicting 
requirements of security and interoperability, 
but it is not perfect



  

Improving the FreeBSD algorithm

● Flaws in the FreeBSD algorithm:
– As the ISN values in SYN-ACK packets are 

randomized, there exists the possibility that the 
same sequence space will be used and a duplicate 
packet from the previous incarnation of the 
connection will cause problems

– The RFC 1948 generated values in SYN packets 
exhibit the inherent weakness in RFC 1948



  

Improving FreeBSD SYN-ACK ISNs 



  

The dual-hash RFC 1948 variant



  

Another view of dual hashing



  

A View With Time Removed



  

TCP Timestamps

● The TCP Timestamp option was introduced in 
RFC 1323

● Timestamps serve two main purposes:
– To allow for more accurate RTT calculations

– For Protection Against Wrapped Sequence 
numbers (PAWS)

● All popular Operating Systems implement 
Timestamps, although Windows does not like to 
use them by default.



  

Timestamp Information Leakage

● Using a system-wide timestamp counter 
reveals a host's uptime

● Using a system-wide timestamp counter 
reveals which connections from a NAT machine 
originate from the same machine behind NAT.



  

Quick Fixes to Timestamps

● NetBSD:  Start each connection's timestamp at 
zero

● OpenBSD:  Start each connection's timestamp 
randomized

● The problem:
– Timestamps are no longer useful for the purposes 

of PAWS

– Linux makes the (reasonable) assumption that 
timestamps are monotonic over connection 
recycling in a few places



  

A Better Improvement For 
Timestamps

● Use the RFC 1948 algorithm, but use only the 
two IP addresses and the system-wide secret 
as input.

● Preserves PAWS usage
● Generally obscures uptime
● Does not solve the NAT issue entirely
● Allows for an important security improvement 

(next slide)



  

RFC 1948 Timestamp Security

● When timestamps are generated using RFC 
1948, they will be predictable only on a per-IP 
basis.

● Hosts can check 32-bit timestamps as well as 
32-bit sequence numbers

● Assume that a 16-bit sliding window of 
acceptable timestamps is used

● Spoofing packets is now 2^16 times as difficult
● Such a verification algorithm will still work if the 

other host does not use RFC 1948 timestamps, 
it will just not improve security.



  

Summary

● Security and Interoperability can coexist
● Significant testing is necessary to make this 

happen
● Interoperability is more important than security 

to some vendors


