
Improving TCP/IP security through randomization without
sacrificing interoperability

Michael James Silbersack
The FreeBSD Project

Introduction

Over the years, many security problems have been found in the TCP and IP protocols. This
is not surprising; the authors of these protocols probably did not anticipate their creations
being used on open, chaotic networks like today's internet. Had they envisioned our present
reality, they most certainly would have included provisions to prevent spoofing, modification,
and interception of data.

In the face of attackers that can intercept packets, not much can be done to improve TCP/IP
without moving to IPSec or other protocols which encrypt the entire packet. However, in the
face of spoofing attacks where the attacker has only partial information about the target
connection, some improvements can be made.

Over the past few years, FreeBSD has moved slowly to make changes to our TCP/IP stack
when security issues that required a change in network visible behavior were announced.
There is a simple reason for this – almost every time we have made a reactionary change to
the TCP/IP stack, users have reported compatibility problems.

This paper aims to describe the changes that FreeBSD has made to improve network security
without sacrificing compatibility, and also to propose some new changes that will increase
network security even further.

Four major topics are covered: TCP Initial Sequence Numbers, TCP Timestamps, IP ID
values, and ephemeral port randomization.

TCP Initial Sequence Numbers

The topic of TCP initial sequence numbers
has been written about many times. The
Morris worm made news in 1988, Kevin
Mitnick's spoofing attack on Tsutomu
Shimomura made news in 1995, “The
Problem with Random Increments” appeared
in 2001, and Paul Watson's “Slipping in the
Window” made the news in 2004. Despite
these events, and the publishing of many
excellent papers on the topic such as [Zal01]
and [Zal02], this is still a topic worth
discussing for one main reason: Every
operating system still uses a different method
of ISN generation!

This divergence is seemingly due to the fact

that there is no RFC recommendation on
initial sequence numbers that takes all
security and compatibility issues into
account. Additionally, no paper has
reexamined all operating systems to see how
effective the response to “Slipping in the
Window” has been.

The importance of unpredictable TCP
initial sequence numbers

The TCP protocol uses a 32-bit sequence
number to track the current state of a
connection; this sequence number is
incremented for each octet of data sent over
the connection, and in response to packets
with the SYN or FIN flags. TCP
connections are bidirectional, so there are

effectively two sequence numbers that must
be tracked per connection, although each is
effectively independent.

There are three categories of attacks that can
be performed if an attacker can guess the
current sequence number of a connection:
Connection spoofing, connection resetting,
and data injection.

Connection spoofing is potentially the most
serious of the attacks, and was described first
in [Mor88]. In order to spoof a connection,
one must send a fabricated SYN packet with
a false source IP address, then guess the
sequence number than the destination system
will respond with in its SYN-ACK packet. If
this value can be guessed and put into a
fabricated ACK packet, the server will
believe that it has established a connection
with the false source IP address. While the
attacker can not receive data from the victim
in this scenario, he can send data. This is a
very dangerous attack when services that can
grant permissions based on IP addresses,
such as rlogin, are attacked.

As connection spoofing requires an exact
guess in order for success to occur,
increasing each initial sequence number by a
random positive increment over the
previously used ISN provides moderate
protection from the attack. If a random
positive increment in the range of one to one
million is used, the attacker must send on
average five hundred thousand packets to
successfully spoof a single connection. Due
to this difficulty and also due to the removal
of IP-based authentication in most programs
today, connection spoofing is not any longer
a serious threat.

Connection resetting attacks have the modest
goal of interrupting an existing connection
between two hosts. As pointed out in
[Wat04], a spoofed RST packet need not be
exact, and must only have a value within the
TCP sliding window. With many operating
systems using a 64K or larger window, this
means that a brute force attack on the entire
sequence space of a connection would only
require 2^32 / 2^16 (65536) packets. When

random positive increments are used, and the
general range of a connections sequence
numbers can be narrowed down, the attack
becomes trivial.

Data injection attacks take advantage of the
same TCP flaw/feature, but instead of
sending a RST packet, they send a data
payload. In the case of encrypted
connections like SSH/SSL, this will merely
result in the connection being terminated. In
the case of more free-form protocols such as
telnet, commands could probably be
successfully injected.

Although most connections are too short
lived and unimportant to be worth resetting /
injecting data into, [Wat04] points out that
BGP sessions are valuable enough to be
targeted.

As the result of [Wat04], many
improvements to TCP which would make
these attacks less likely by reducing the
range of sequence values accepted were
proposed. Also suggested was the
randomization of ephemeral ports to add an
additional barrier to the attack.
Unfortunately, the complexity, potential
compatibility issues, and legal issues
surrounding the proposed fixes have caused
many operating systems (including
FreeBSD) to only partially implement them.

Initial Sequence Number requirements

The original TCP document, RFC 793 states:

RFC 793, page 27:
To avoid confusion we must prevent
segments from one incarnation of a
connection from being used while
the same sequence numbers may still
be present in the network from an
earlier incarnation. We want to
assure this, even if a TCP crashes
and loses all knowledge of the
sequence numbers it has been using.
When new connections are created,
an initial sequence number (ISN)
generator is employed which selects
a new 32 bit ISN. The generator is
bound to a (possibly fictitious) 32
bit clock whose low order bit is

incremented roughly every 4
microseconds. Thus, the ISN cycles
approximately every 4.55 hours.
Since we assume that segments will
stay in the network no more than
the Maximum Segment Lifetime (MSL)
and that the MSL is less than 4.55
hours we can reasonably assume that
ISN's will be unique.

Other than stating that the sequence numbers
of connections which share the same IP/port
tuple should have non-overlapping sequence
numbers within the same MSL, which is
defined to be 2 minutes, no other
requirements are stated.

The goal of having monotonically increasing
initial sequence numbers of course only
matters when an IP/port tuple is reused
within a short period of time. A system
reboot (or NAT machine reboot) is one
reason this can occur.

Another situation in which port reuse will
occur is when a client machine makes
frequent connections to a server, going
through its entire ephemeral port range in the
process. If the client quickly runs through
this range and reuses the first ephemeral
port, the SYN packet reaching the server will
find a socket still in the TIME_WAIT state.
In order to maintain the “quiet time” of the
TIME_WAIT state, but to still allow new
connections on that IP/port tuple to be
accepted, the authors of the 4.2BSD TCP/IP
stack added a simple check. If the ISN of a
SYN packet coming in was greater than the
value of the last sequence number used in the
connection that previously occupied that
IP/port tuple, the old socket would be
discarded and a new connection would be
established. Given the mod 1 arithmetic
used in sequence number calculations and
the 32-bit size of sequence numbers, this
means that any value up to 31 bits in size
greater than the previously used value would
be accepted, and any value up to 31 bits less
in size would be ignored until the
TIME_WAIT socket timed out on its own.

This sequence number check, although
originally a quick hack, made its way into

many TCP/IP stacks over the years. An
operating system that ignores this rule and
attempts to send out SYN packets with
random ISN values will find that roughly
50% of connections will fail in situations
where TIME_WAIT recycling comes into
play.

An attempt to emulate the monotonic
increase algorithm from RFC 793 while
making sequence number prediction hard is
what presumably led to the random positive
increment algorithms used by many
operating systems in the 1990s.

In 2001, as a result of the information in
[New01], this author did an ad-hoc survey of
the ways in which open source operating
systems validated initial sequence numbers,
and determined that the BSD-derived
TIME_WAIT check is the only actual
requirement imposed on a TCP/IP stack
author. SYN-ACK packets should exhibit a
sequence value greater than the one used by
the previous incarnation of a connection on
that port, but no known operating system
actually checks. Additionally, there is no
requirement that an operating system use the
same sequence space for SYN and SYN-
ACK packets.

An improvement: RFC 1948

In RFC 1948, Steven Bellovin proposed a
ISN generation algorithm that would create
monotonically increasing ISN values that
differed per IP/port tuple:

RFC 1948, page 2 - 3
...Instead, we use the current 4
microsecond timer M and set

ISN = M + F(localhost, localport,
remotehost, remoteport).

 It is vital that F not be
computable from the outside, or an
attacker could still guess at
sequence numbers from the initial
sequence number used for some other
connection. We therefore suggest
that F be a cryptographic hash
function of the connection-id and
some secret data. MD5 [9] is a

good choice, since the code is
widely available.
 The secret data can either be a
true random number [10], or it can
be the combination of some per-host
secret and the boot time of the
machine...

This algorithm performs exactly as expected,
creating a unique value for each IP/port tuple
that is then incremented at a constant rate by
the system time. Unfortunately, there is one
property of this algorithm that precludes it
from being used as is. Since the time
component increases at a constant rate and
the hash component is constant, all future
ISNs for a IP/port-tuple may be perfectly
predicted once a single value has been
observed. This flaw was noted in [Zal01],
but no specific improvement was suggested.

Therefore, the following attack (inspired by
comments from Robert Watson) is possible
when RFC 1948 is used for generating the
ISNs sent out in SYN-ACK packets. A
spammer with a T1 connection he wishes to
keep secret obtains a dial-up connection
from an ISP that does not block connections
to port 25. The spammer than makes
connections from his dynamically assigned
IP address to port 25 on each of his intended
spam targets, logging the ISN returned and
the OS fingerprint detected. Next, the
spammer disconnects his modem, and puts
the observed data into his mass mailing
software. This software then proceeds to use
the obtained data to forge connections to
each of the target mail servers, causing spam
to appear to originate from the dial-up IP
address.

RFC 1948 usage in FreeBSD

In the spring of 2001, the results of [New01]
showed that the random positive increments
algorithm FreeBSD was still using was
insecure. As a quick fix, the algorithm used
by OpenBSD was ported over.
Unfortunately, that algorithm created non-
monotonic sequence numbers in SYN
packets, and problems with TIME_WAIT
recycling were quickly reported by users.

As a result, this author decided to start from
scratch, and on August 22nd, 2001 the
following ISN generation algorithm was
committed to the FreeBSD TCP/IP stack:

ISN values in SYN-ACK packets are given
random values, as returned by arc4random().

ISN values in SYN packets are generated by
the RFC 1948 algorithm:

ISN = Time + MD5(remoteport, localport,
remotehost, localhost, secret)

Time increments at 1MB/second and the
secret is a 128-bit system-wide secret value
that is seeded when the first outbound
connection establishment occurs.

Two user-adjustable values are present:

net.inet.tcp.strict_rfc1948 – When set to 0
(the default), SYN-ACK values are filled
with random data. If set to 1, the ISNs of
SYN-ACK packets would be generated by
the RFC 1948 algorithm.

net.inet.tcp.isn_reseed_interval – This
determines the number of seconds between
reseeding of the system-wide secret value. If
left at 0 (the default), no reseeding will ever
occur.

Not using RFC 1948 for SYN-ACK packets
was motivated by the predictability issue
described in the section above. Ad-hoc
research of how other operating systems
generated and interpreted SYN-ACK ISNs
showed that no common operating system
actually cared about monotonicity, so the
most secure option was adopted – purely
random ISNs.

On the other hand, SYN ISNs needed to be
monotonic, due to the TIME_WAIT
recycling sequence number requirement
discussed above. No secure algorithm other
than RFC 1948 could be found that satisfied
this requirement. After some consideration,
it was determined that prediction of SYN
ISNs would not be a commonly abused
problem. Such prediction would not allow

for connection spoofing, but would only
allow for connection reset/data injection.
However, the only connections vulnerable to
this would be ones made from a static-IP
server to the dynamic IP address which the
attacker had previously occupied.

In order to see the results of this
implementation, see the graphs in Appendix
A.

In the four years since this algorithm was
added to FreeBSD, the only major change
that has occurred is the addition of TCP
syncookies by Jonathan Lemon in December
of 2001, as described in [Lem01]. When
enabled, as they are by default, syncookies
replace the random value in SYN-ACK
packets. The algorithm used in SYN packets
remains unchanged.

While the use of syn cookies remains
controversial (no other operating system uses
syn cookies by default), the randomness of
the resulting sequence numbers is not in
question, as shown by the graphs in
Appendix A.

As far as anyone in the FreeBSD project is
aware, there have been no reports of
compatibility problems caused by this
method of ISN generation.

During an audit of the syn cookie code in
2003, one security flaw was found. The
secret value used when generating syn
cookies was only 32 bits in length, allowing
an attacker with a fast processor to perform a
brute force hash attack and find out the
secret. Once found, the secret could be used
to perform perfect connection spoofing
attacks against the victim until the secret
expired (for about 60 seconds.) The flaw
was fixed by simply increasing the secret
size to 128 bits, making the attack infeasible.
There have been no reports of this flaw being
exploited in the wild.

A minor improvement to the FreeBSD
algorithm

One oversight in the algorithm currently
used by FreeBSD to generate SYN-ACK

packets is that it tries to be too random.
Specifically, when TIME_WAIT recycling
occurs on a socket, a totally new ISN value
is chosen. While this works properly under
normal circumstances, it means that with
certain values of ISN and certain old
duplicate packets on the network, old data
can be injected into the new connection.

As can be seen in the graph in Appendix B,
the proposed change to SYN-ACK
generation uses the existing scheme for ISN
generation, except when a socket in the
TIME_WAIT state is being recycled. In that
case, a random positive increment from the
previously used sequence number is used.
However, if the TIME_WAIT socket
expires, as occurs in the 130 second idle time
shown above, a fresh ISN is once again
chosen. Note that a few ports change their
sequence numbers over the 30 second idle
period; this appears to be the result of the
case where TIME_WAIT sockets are created
and expired on the client side of the
connection rather than on the server side.
This will be examined more thoroughly
before the final implementation is
completed.

Improving RFC 1948

During a discussion with Jeffery Hsu, which
unfortunately can not be located, the idea for
an improvement upon RFC 1948 was
developed. The basic idea was this: Use
two MD5 hashes in RFC 1948, slowly
switching between them by averaging these
values. This would allow the resulting
sequence value to be monotonic, yet
unpredictable over long periods of time.
Such an algorithm would look like this:

md5_1 = MD5(remoteport, localport,
remotehost, localhost, secret1)
md5_2 = MD5(remoteport, localport,
remotehost, localhost, secret2)
ISN = Time +
(md5_1 * (reseed_interval –
elapsed_time)) / (reseed_interval)
+ (md5_2 * (elapsed_time)) /
(reseed_interval)

In order for this to work, a few additional

parameters must be specified. The rate of
increase of time must be greater than the
maximum rate of decrease from md5_1 to
md5_2. If this premise is violated, ISNs will
actually decrease when certain large values
of md5_1 and small values of md5_2 occur.

Reseeding is straightforward in this
algorithm. When the elapsed time catches
up to reseed_interval, 100% of the value will
be from md5_2, and 0% of the value will be
from md5_1. At this point, the contents of
secret2 should be transferred to secret1,
secret2 should be filled with a new random
value, and elapsed time should be reset to
zero.

To see a visual representation of the ISN
values generated by this dual hash algorithm,
see Appendix B.

Although this algorithm is an improvement
over RFC 1948, it is still predictable until the
next reseed occurs. The possibility of using
a non-linear function to transition between
the two hash values is being investigated.

TCP Timestamps

TCP Timestamp values, as specified in RFC
1323, are intended to improve the
performance of TCP by increasing the
accuracy of RTT measurement, especially in
the case of lost packets, and allow systems to
determine if a wrapped sequence number is
the result of an old packet or a new
connection.

The simplest way to implement TCP
timestamps is to use a single global time
value for all connections. This is the basic
implementation that FreeBSD and most other
operating systems use. Unfortunately, this
global counter leaks information in two
ways. First, as this counter is derived from
system uptime, it allows an attacker to know
how long the system has been up. Such
uptime information could be abused in a
variety of ways. A simple scan of a network
reveals which systems have long uptimes –
and are therefore probably behind on
security patches. A more patient attacker

who logs this data over a long period of time
could learn that a company performs weekly
restarts and use this information as part of a
timed attack.

The second piece of information leaked by a
global counter is a system's identity. Given
an range of IP addresses, an attacker looking
at timestamp values will be able to determine
which IP addresses belong to independent
systems, and which IP addresses are aliases
belonging to a single machine. This
information could be very useful for an
attacker – if no obvious security holes are
found on one IP address of a machine, he
could search all the other IP addresses of the
machine for weaknesses, confident that he is
still investigating the target machine and not
wasting time on a honeypot or some other
diversion.

There are three simple solutions to these
information leakage problems. First, uptime
monitoring may be partially foiled by
initializing the global counter to a random
value at boot time. Unfortunately, this will
be ineffective if an attacker simply probes
once per day and records his results. As
such, it is an almost useless change.

Solution number two is to switch to using
separate timestamp counters for each TCP
connection, and to initialize a new
connection's timestamp value to 0. This
prevents an adversary from learning about a
system's uptime, or determining if two IP
addresses are hosted by the same computer.

Solution number three differs from number
two in that the connection counter is
initialized to a random value instead of to
zero each time. This change is intended to
prevent future attacks which might rely on
predicting timestamp values.

While changes number two and three defeat
the information leaks listed above, they also
go against the spirit of RFC 1323, and may
cause problems in certain situations. Section
4 of the RFC discusses how timestamps can
be used for PAWS – Protection Against
Wrapped Sequence numbers.

Section 1.2 of RFC 1323 describes a case
where PAWS would ideally come into play:

(2) Earlier incarnation of the
connection

Suppose that a connection
terminates, either by a proper
close sequence or due to a host
crash, and the same connection
(i.e., using the same pair of
sockets) is immediately reopened.
A delayed segment from the
terminated connection could fall
within the current window for the
new incarnation and be accepted as
valid.

If timestamps are generated from a global
counter, the PAWS mechanism would have
no problem determining that timestamps on
packets delayed in the network are old.
However, if each connection starts with the
timestamp counter at 0, PAWS will be
totally foiled, unable to tell new from old
packets. In the case that random timestamp
initialization is used, PAWS might work in
some cases, but be fooled in others – the
effects would be unpredictable.

Zeroing or randomizing timestamp values
also causes a neat trick used by the Linux
TCP/IP stack to break. In Linux, the
TIME_WAIT sequence number check has
been improved to allow a port to be recycled
if the ISN is greater than the previously used
value or if the timestamp is greater than the
previously used value. This check allows
operating systems that used randomized ISN
values in SYN packets with a standard
timestamp implementation to still recycle
ports. However, an operating system that
has modified ISN values and timestamps will
be out of luck.

The unfortunate part about these changes is
that the incompatibilities they cause might
not be noticed except under carefully crafted
test conditions. While the occurrence of
these problems in actual usage is unlikely,
the probability is that the problem will occur
for some users at some time, which is why
these changes have not been implemented in

FreeBSD.

Using RFC1948 to improve timestamps

Luckily, there is one potential method of
retaining compatibility with the PAWS
mechanism while still defeating the
information leaks discussed previously. The
solution is simple – use the algorithm
described in RFC 1948 to generate per-
connection timestamps!

Using RFC 1948's algorithm to generate
timestamps is not a perfect solution; as with
its use in ISNs, it suffers from the issue that
it is perfectly predictable to someone who
can reconnect with the same IP and port pair.
Therefore a service like netcraft, which
probes on a regular basis, could determine
uptime simply by looking for discontinuities
in timestamp values. Someone attempting to
determine if two IP addresses were hosted on
a single computer could look for matching
discontinuities to determine that a reboot of
that single machine occurred.

The dual hash improvement on RFC 1948
unfortunately can not be used with
timestamps. The differing slopes of each
connection would make time measurement
more difficult, and the extra math required to
generate each timestamp would slow overall
throughput.

One additional caveat when implementing
RFC 1948 style TCP timestamps is that at
least one heuristic in the Linux TCP stack
compares the timestamp value of an
incoming packet to the timestamp value of
other packets to determine if that packet is
legitimate when a syn flood is in progress.
Assuming that other systems make similar
assumptions, perhaps instead of using
timestamps that are unique per IP/port pair it
would be better to use timestamps that are
just unique per IP.

Using timestamps to resist data
reset/injection attacks

If TCP Timestamps are made per-tuple
unique using the RFC1948 algorithm or

simply randomized at connection start time,
using timestamps to greatly improve
resistance to blind reset/injection attacks
becomes simple to implement. RFC 1323
specifies in section 4.2.2 that timestamps are
monotonically incremented at a constant rate
between 1 and 1000 ticks per second. This
allows a receiver to interpret the sender's
timestamps, and use them as additional spoof
protection.

Assuming that the sender is following RFC
1323, all a receiver must due in order to
make blind spoofing connections on
timestamped connections very difficult is to
ensure that the following is true for each
received packet:

(idle_seconds < 30) && (abs(TScurrent –
TSlast) < 32 * 1024)

This still allows any legitimate packet that is
up to 30 seconds late in arriving in, while
blocking spoofed packets that do not fall into
this window. As this algorithm accepts a
window of 65536 timestamps out of a
possible 2^32 at any point in time, an
attacker who attempts to try a brute force
reset/injection attack would be required to
send an additional 2^16 times as many
packets. This increases the difficult of any
such attack significantly.

Note that this technique is perfectly
compatible with senders using system-wide
timestamps and timestamps zeroed at
connection start time, but will provide very
little added security in those cases.

Unfortunately, the timestamp check must be
skipped on idle connections due to the
possibility of a host rebooting, losing its
timestamp counter, and attempting to
reestablish a connection on the same ip/port
tuple.

IP ID issues

The problems of sequential IP ID values
were described first in [San98] and later in
[Fyo] and other places. As of now, FreeBSD
has not yet implemented any changes due to

the perceived lack of importance of this issue
and due to the performance penalties that
would be incurred by some of the solutions.

Three main solutions have been implemented
in different operating systems to solve the
problems of predictable IP ID values.

The simplest option, implemented in Linux,
was to use an IP ID value of zero for all
packets that had the DF (Don't Fragment) bit
set. Unfortunately, while this idea would
work if all network devices were RFC
compliant, it was discovered that certain
network devices would fragment DF packets
anyway, leading to a stream of fragments, all
with an ID of 0. As a result of such
misbehaving devices, the idea of zeroing the
IP ID field has been abandoned.

A second solution, now implemented in both
Linux and Solaris is to track per-IP state,
setting up a seperate IP ID counter for each
IP the system communicates with.
Unfortunately, this solution would be
expensive to implement in FreeBSD;
FreeBSD has moved away from looking up
per-IP state on every packet reception and
transmission. The TCP hostcache, which
now stores per-IP information such as MTU,
RTT, and other information could be used
for this purpose, but it would reduce
performance.

A third solution was chosen by the authors of
OpenBSD's IP stack. They use a linear
congruential generator (LCG) to generate
sequences of IP ID values that repeat only
after the entire sequence has been cycled. So
that the LCG may be reseeded after each
cycle without causing a quick reuse of any
value, the 16 bit space is split into two 15 bit
spaces; the space used is toggled after each
cycle. This system will defeat idlescan
detection, but may not be as effective at
masking packet transmit rate or masking if
two IP addresses are hosted by the same
machine. If one watches how often a system
cycles between the two 15-bit addresses
spaces, rough estimates on traffic rates can
be gathered. If one notices that two IP
addresses always switch IP ID spaces

simultaneously, then they are probably
running on the same machine.

One common goal of all of these solutions is
to make the time before an IP ID is reused as
great as possible. This ideal is mentioned in
many documents discussing the topic of IP
ID abuse. Fyodor mentions in [Fyo], “This
is difficult to get right -- be sure the sequence
does not repeat and that individual numbers
will not be used twice in a short period.”

Despite the pervasiveness of Fyodor's belief,
there is in fact no reason why quick
recycling of IP ID values is a serious
problem.

If two fragmented packets with the same IP
ID value are put onto the wire at the same
time, there are two possibilities that can
occur.

The first possibility is that packet #1 will
arrive intact at the destination before packet
#2. When this occurs, packet #1 will be
reassembled successfully, the reassembly
queue will be cleared out, packet #2 will
arrive, and it too will be reassembled
successfully.

The second possibility is that one of the
fragments of packet #1 is lost in transit,
and/or the fragments of packet #1 and #2
arrive in some jumbled order. If any of these
problems occur, the reassembly process will
create a reassembled packet that contains
portions of both packets. This corrupt packet
will then be handed up to either the TCP or
UDP layer, where its checksum will fail
verification, and the packet will be
discarded. The only way a corrupt packet
could be reassembled and passed to an
application is if two fragments happen to
have the same checksum or if the receiving
operating system fails to verify the
checksum.

What this means is that in the case where
two packets to the same destination are sent
with identical IP ID values, the loss of one of
the fragments of the first packet will
effectively result in the loss of the second

packet as well.

Therefore, using a PRNG to generate IP ID
values may cause a few extra packet drops in
certain unlucky situations where packet loss
already exists. These extra packet drops can
be considered just like any packet loss – a
nuisance, but nothing that TCP and UDP
can't handle.

On the positive side, using a PRNG to
generate IP ID values totally eliminates any
possibility of using a machine as an idlescan
drone, estimating traffic rate, or determining
how many IP addresses belong to a single
host.

Ephemeral Port randomization

In order for a blind spoof attack on a TCP
connection to be successful, one of the
pieces of information that the attacker must
guess is the ephemeral source port used by
the client end of the connection. As most
operating systems sequentially allocate
ephemeral port numbers, narrowing the port
used by a recently established connection is
relatively easy. All the attacker must do is
cause the client to connect to the attacker's
machine and determine the ephemeral port
used. If the client is running services that
perform ident checks, this will be easy to
trigger. Other methods of inducing a
connection may include sending a message
that will bounce to a SMTP server running
qmail, connecting to a ftp server using
passive mode, or forcing the DNS server on
the client machine to perform a TCP DNS
lookup.

Randomizing the order of ephemeral port
allocation is an obvious method of
improving the difficulty of a blind attack.
Due to the randomization, the attacker will
now have to spoof packets from all ports in
the ephemeral port range, rather than just the
last 5 to 10. In the case of OSes using the
classic ephemeral port range (1024 to 5000),
this makes the attack 500 times more
difficult, assuming an attack range of 10
before randomization. Operating systems
that use large ranges of ephemeral ports

(possibly as large as 1024 to 65535) will
require an even greater number of packets to
be sent.

Paul Watson's paper “Slipping in the
Window” led to a quick implementation of
port randomization in FreeBSD. This
changed seemed safe, as OpenBSD has
randomized ephemeral ports since July of
1996 (revision 1.6 of in_pcb.c.)
Unfortunately, a few users started reporting
problems soon after the change was made to
FreeBSD.

The problem reported was that an
accelerating webcache that had been
upgraded to include port randomization was
suddenly seeing failed connections to the
backend web server it connected to. One of
the failed connections can be seen in
Appendix C. Both the webcache and the
webserver were running an up to date
version of FreeBSD, and no problems were
experienced once the sysctl to disable port
randomization was toggled off, eliminating
the possibility of an unrelated change that
broke the system.

This failure case was not seen prior to port
randomization because sequential allocation
of ephemeral ports leaves a noticeable
amount of time before a port is reused.
Randomization, due to its nature, will
sometimes cause a port to be reused much
more quickly - less than a hundreth of a
second in the trace shown here.

While the issue shown here is not directly
port randomization's fault – something
clearly went wrong in the webserver's TCP
state machine – it is also true that just an
additional second or two before the port in
question was reused would probably have
avoided the problem.

The number of TCP stack interactions that
will see similar problems to the one captured
here is unknown, but these results indicate
that if one were to magically add simple port
randomization to every machine on the
planet at once, many breakage situations
such as the one here would be seen.

In order to reduce the likelihood of this
problem while retaining the security benefits
of port randomization, a method to
randomize port use but to ensure that ports
are not reused too quickly is needed.
Unfortunately, using a linear congruential
generator to choose ephemeral ports would
not be effective – the length for which a
connection stays open is not constant, so a
port could still be reused quickly if the
previous connection is terminated just before
the LCG cycles through all other ports and
returns to it.

At present, FreeBSD attempts to avoid this
quick port recycling problem by falling back
to sequential port allocation whenever the
machine is making more than 10 outbound
connections per second. This solution is
more of a hack than anything, and has been
slated to be replaced as soon as a better
method can be found.

In discussions with Brooks Davis at BSDCan
2005, a workable system of ensuring that
ports would not be recycled too quickly was
sketched out. The basic concept is to
allocate an array with one slot per ephemeral
port. At the time that a connection is
terminated, the current time and an amount
of buffer time (10 seconds) would be added
and stored in the slot for that port. This
timestamp would make the first time at
which the port could be reused. Port
allocation would occur randomly at all times,
skipping ports which were marked as not yet
ready to reuse. One drawback to this
solution is that it would not allow hosts to
use the same ephemeral port on two different
local IPs simultaneously. As a result, a more
creative solution may need to be found.

This system has not yet been implemented.
Once it has been implemented and passed
preliminary testing, the owner of the troubled
accelerator proxy will be one of the first
users asked to test the change.

Future Work

Preliminary analysis of the TCP ISN

generation systems of other open source
operating systems indicates that they may
not meet the security and compatibility
criteria set forth in this paper. Research into
how these operating systems can be
improved will take additional time, and
unfortunately can not be put into this edition
of the paper.

Also, many of the proposed algorithms in
this paper have only had proof of concept
implementations, and are not ready for
inclusion in the FreeBSD source tree yet.
After this paper is presented to wider peer
review at EuroBSDCon, work on
incorporating the changes can proceed.

Finally, the attacks discussed in [Wat04] and
[Gont05] have not been addressed in all
operating systems equally, and in some cases
have not been addressed at all. A test suite
similar that can perform all the described
attacks should be created and all operating
systems should be put to the test, including
FreeBSD.

Once additional work is completed, an
updated copy of this paper will be posted at
http://www.silby.com/eurobsdcon05/

Conclusion

This paper has demonstrated that untested
changes to the TCP/IP stack of an operating
system can often cause unexpected
compatibility issues. However, careful
analysis can solve almost any problem,
leading to security improvements which do
not reduce interoperability.

While the new algorithms proposed here
have not yet been tested under a wide range
of circumstances, it is hoped that the release
of this paper will spark a broad discussion on
the topic of TCP/IP security, hopefully
leading to a new round of standardization
that has been sorely lacking in the past few
years.

Appendix A: Graph views of FreeBSD 5.4 ISN values

The graphs in Appendices A and B were generated by running a web server on the machine
acting as the server in each test, and a http benchmarking tool on the client. To force
TIME_WAIT recycling to occur so that the ISN values can be seen per port, the ephemeral
port range on the clients was set from 65535 to 65550. The http benchmarking tool was then
sent to request a very short HTML page roughly 5 times a second, thereby creating a set of
datapoints which was fed into gnuplot. Points are connected together with lines, which is
why the graphs of psuedorandom data appear as a graph of haphazard lines rather than a
cloud of dots.

ISN values in SYN packets sent from a FreeBSD 5.4 client to a modified
FreeBSD 7 server. Notice how each port has a distinct offset from other ports,
but how all have the same rate of increase.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 0 20 40 60 80 100 120

ISN values in SYN packets from FreeBSD 5 to FreeBSD 7+silby

Unanswered SYN packets: 0 Connections per second: 5.01

The ISN values in SYN-ACK packets sent by a FreeBSD 5.4 server with
net.inet.tcp.syncookies=1. Although syn cookies intentionally create
predictability in the short run, it is evident that the long-term effect is similar to
randomization.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 0 20 40 60 80 100 120

ISN values in SYNACK packets from FreeBSD 5 to FreeBSD 7+silby

Unanswered SYN packets: 0 Connections per second: 5.01

The ISN values in SYN-ACK packets sent by a FreeBSD 5.4 server with
net.inet.tcp.syncookies=0. Arc4random is working properly, and prediction of
sequence numbers is not possible.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 0 20 40 60 80 100 120

ISN values in SYNACK packets from FreeBSD 5 to FreeBSD 7+silby

Unanswered SYN packets: 1 Connections per second: 5.00

Appendix B: Graphs of proposed changes to FreeBSD's ISN generation schemes

The proposed modification to FreeBSD's SYN-ACK generation is shown. Notice
how sequence numbers are the same across the 30 second idle time, but change
completely after the 130 second idle time.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 0 50 100 150 200 250

ISN values in SYNACK packets from FreeBSD 7+silby to FreeBSD 5

Unanswered SYN packets: 0 Connections per second: 1.92

65517:
65529:

65520:
65509:

65505:
65521:

65530:
""

A graph of the SYN ISN values from an implementation of the dual hash variant
of RFC 1948 using a 200 second reseed interval.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 0 100 200 300 400 500 600 700 800 900

ISN values in SYN packets from FreeBSD 7+silby to FreeBSD 7+silby

Unanswered SYN packets: 0 Connections per second: 5.00

65515
65510

65505
65518

65520
65525

65527
""

A third way of looking at the results of the dual hash algorithm; the first
derivative of the ISN values for each port is shown. The slight dips noticeable
are due to a glitch in the callout-incremented global time counter.

A modification to the dual hash graph so that sequence numbers do not wrap at
the 32-bit mark allows for a better view of how the slopes of each port are
distinctly different.

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 0 100 200 300 400 500 600 700 800 900

ISN values in SYN packets from FreeBSD 7+silby to FreeBSD 7+silby

Unanswered SYN packets: 0 Connections per second: 5.00

65515
65510

65505
65518

65520
65525

65527
""

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 100 200 300 400 500 600 700 800 900

ISN values in SYN packets from FreeBSD 7+silby to FreeBSD 7+silby

Unanswered SYN packets: 0 Connections per second: 5.00

65515
65510

65505
65518

65520
65525

65527
""

Appendix C: A failed connection partially due to overly fast ephemeral port recycling

17:31:15.372512 XX.XX.XX.XX.1501 > YY.YY.YY.YY.80: S 4253937160:4253937160(0) win 8192 <mss
1460,nop,wscale 0,nop,nop,timestamp 152193511 0> (DF)
17:31:15.372642 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: S 1547679919:1547679919(0) ack 4253937161
win 57344 <mss 1460,nop,wscale 0,nop,nop,timestamp 295129972 152193511> (DF)
17:31:15.372656 XX.XX.XX.XX.1501 > YY.YY.YY.YY.80: . ack 1547679920 win 8688
<nop,nop,timestamp 152193512 295129972> (DF)
17:31:15.372665 XX.XX.XX.XX.1501 > YY.YY.YY.YY.80: P 4253937161:4253937378(217) ack 1547679920
win 8688 <nop,nop,timestamp 152193512 295129972> (DF)
17:31:15.374152 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: . 1547679920:1547681368(1448) ack
4253937378 win 57920 <nop,nop,timestamp 295129972 152193512> (DF)
17:31:15.374243 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: P 1547681368:1547682422(1054) ack
4253937378 win 57920 <nop,nop,timestamp 295129972 152193512> (DF)
17:31:15.374248 XX.XX.XX.XX.1501 > YY.YY.YY.YY.80: . ack 1547682422 win 7634
<nop,nop,timestamp 152193515 295129972> (DF)
17:31:15.374253 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: F 1547682422:1547682422(0) ack 4253937378
win 57920 <nop,nop,timestamp 295129972 152193512> (DF)
17:31:15.374257 XX.XX.XX.XX.1501 > YY.YY.YY.YY.80: . ack 1547682423 win 8688
<nop,nop,timestamp 152193515 295129972> (DF)
17:31:15.374266 XX.XX.XX.XX.1501 > YY.YY.YY.YY.80: F 4253937378:4253937378(0) ack 1547682423
win 8688 <nop,nop,timestamp 152193515 295129972> (DF)
17:31:15.374537 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: . ack 4253937379 win 57920
<nop,nop,timestamp 295129972 152193515> (DF)
17:31:15.389416 XX.XX.XX.XX.1501 > YY.YY.YY.YY.80: S 4253971599:4253971599(0) win 8192 <mss
1460,nop,wscale 0,nop,nop,timestamp 152193545 0> (DF)
17:31:15.389598 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: R 1547682423:1547682423(0) ack 4253937379
win 57920 (DF)
17:31:15.389604 YY.YY.YY.YY.80 > XX.XX.XX.XX.1501: R 0:0(0) ack 4253971600 win 0 (DF)

References:

[RFC793] “RFC 793: Transmission Control Protocol”, 1981

[RFC1323] Bellovin, Steven “RFC 1948: Defending Against Sequence Number Attacks”,
1996

[Free03] FreeBSD Security Advisory 3:03 – Brute force attack on SYN cookies

[Fyo] Fyodor, “Idle Scanning and Related IPID games”

[Gont05] Gont, F., "ICMP attacks against TCP", September 2005, Internet Draft

[RFC1323] Jacobson, Braden, & Borman “RFC 1323: TCP Extensions for High
Performance”, 1992

[Lem01] Lemon, Jonathan “Resisting SYN flood DoS attacks with a SYN cache”, 2001

[Mor88] Morris, Robert “A Weakness in the 4.2BSD Unix TCP/IP Software, 1985

[New01] Newsham, Timothy “The Problem with Random Increments”, 2001

[San98] Sanfilippo, Salvatore Bugtraq posting: “new tcp scan method”, 1998

[Wat04] Watson, Paul “Slipping in the window: TCP reset attacks”, 2003

[Zal01] Zalewski, Michal “Strange Attractors and TCP/IP Sequence Number Analysis”, 2001

[Zal02] Zalewski, Michal “Strange Attractors and TCP/IP Sequence Number Analysis - One
Year Later”, 2002

